

Copyright © Compsim LLC 2007; All rights reserved 1 of 19

Application Note: Integrating KEEL Cognitive Engines in GE PAC

Systems

(General Electric Programmable Automation Controller Systems)

Objective:

Programmable Logic Controllers (PLCs) have recently evolved to integrated control
platforms commonly called Programmable Application Controllers (PACs). This has
primarily been lead by the integration of motion control into the backplane which allows
more complex, integrated applications to be performed. Applications that had once
been the domain of DCS (Distributed Control Systems) are now within the domain of
some PAC systems.

GE/Fanuc is a leader in industrial automation systems. With their PACSystems™ RX7i
and RX3i they have a faster backplane that enables data to be passed between I/O and
the processor more efficiently, provide for RIUP (removal and insertion of modules
under power), increased memory, and added advanced diagnostics. GE/Fanuc
supports their PACSystems with Proficy Machine Edition development environment that
supports IEC 61131-3 (1131-3) Programming Languages.

One of the 1131-3 programming languages is known as Function Block Diagram
programming. This language allows logic to be encapsulated in a function block.
Proficy Machine Edition allows function blocks to encapsulate logic in the 1131-3
languages (Relay Ladder Logic – RLL, Structured Text – ST, Sequential Function
Charts – SFC, Function Blocks – FB) and compiled C blocks.

C blocks are commonly used for custom algorithms, or to perform functions that can be
handled more efficiently in C than in other languages (moving blocks of memory for
example).

This application note focuses on exploiting the capabilities of embedded C Function
Blocks to provide solutions to much more complex applications while still avoiding the
requirement of designing, debugging, and testing manually developed C code.

Application Example:

This application note will not focus on the structure of a particular KEEL application, so
we will not spend time discussing the details of the KEEL design. However, a “sample
problem” is provided to show how a KEEL engine is integrated into the solution.

Copyright © Compsim LLC 2007; All rights reserved 2 of 19

Figure 1

Sample Problem:

In this example we have a production problem where the operator is asked to increase
production at his/her work station.

The operator is responsible for the operation of the equipment. The operator has been
trained on safe operation of the equipment. The operator is given work orders to define
what is expected for that day’s production. The operator controls the speed of the
machine. By increasing the speed, more parts are produced, but at a certain point the
quality degrades, and wear and tear on the equipment increases.

To pose one scenario: During the day, the operator’s supervisor comes by and informs
the operator of the need to increase production because of a new order. The operator
increases the speed a little bit and production increases. The operator detects a new
vibration in the machine being used to produce the parts. After ignoring the vibration for
a while a maintenance technician is called. Production is stopped while the technician
looks over the system.

Copyright © Compsim LLC 2007; All rights reserved 3 of 19

In this example, the humans made a number of judgmental decisions: 1. The
supervisor made a judgmental decision to try and escalate production by telling the
operator of the new order and “asking” him to produce more parts. 2. The operator
made a judgmental decision on how much to adjust the machine speed by balancing
risk against the need to increase production. 3. The operator made another judgmental
decision relative to the amount of vibration which justified calling the service technician.
4. The service technician made a judgmental decision about whether to stop production
to analyze the system.

None of these decisions are auditable in terms of what one would expect of an
automated system. The reasoning behind the decisions is not transferable to other
facilities, because they cannot be explained in mathematical terms. There is little
opportunity to upgrade or refine the decision-making process, since the existing process
cannot be explained or audited.

By introducing KEEL technology into the system design as shown in Figure 1, the
importance of increasing production would be supplied to the system as a weighted
value. This value would be integrated into the performance calculation according to
company policy. This company policy would take into account the known risk of
increasing machine speed (Figure 2). A separate segment of the KEEL engine would
be monitoring diagnostics (vibration in this example). The impact of vibration on
Production Value is shown in Figure 3. Again, according to company policy, the service
technician would automatically be called when a certain level of vibration was detected.
This is shown in Figure 1 when the vibration reaches a normalized value of 60. At the
same time the machine speed or other control parameters might be immediately (or
continuously) adjusted based on vibration feedback from the machine (again, according
to company policy). This is also accomplished in the Figure 1 design. Finally, the
decision by the service technician to take the machine out of production for examination
might be controlled by the machine itself, rather than waiting for the decision by the
service technician. In this design the increase in vibration is fed back into the speed
control loop which automatically reduces the machine speed. Figure 4 shows a 3-D
graph of the production value as speed is increased, and as detected vibration
increases. In all cases, because the policy processing is integrated into the PLC, it can
be copied and distributed to other locations. If it is found that the policy needs to
change, it can be updated to match the needs of the enterprise. In all cases, the
reasoning can be explained and audited.

Copyright © Compsim LLC 2007; All rights reserved 4 of 19

Figure 2

Impact of Increasing Speed

Figure 2 shows the normal operating rate at 40% (left side of the graph). It also shows
the company policy that allows the operator to increase production and accept some
degradation in overall quality up to a certain point (upward slope of the curve), at which
any increase in production would create unacceptable rejects and shorten the life of the
machine (downward slope of the curve).

Copyright © Compsim LLC 2007; All rights reserved 5 of 19

Figure 3

Impact of Vibration on Risk

Figure 3 shows the policy for interpreting vibration on the life of the machine. In this
case a little vibration is acceptable (and expected).

Copyright © Compsim LLC 2007; All rights reserved 6 of 19

Figure 4

Integration of Machine Speed and Vibration on overall Business Value

Figure 4 shows how vibration can be used together with desired machine speed to
identify the appropriate maximum speed. It would be difficult (or impossible) to tell
operators how to integrate these values in their head and control the equipment
according to policy.

Copyright © Compsim LLC 2007; All rights reserved 7 of 19

Figure 5

Creating a KEEL Engine in C

Referring to Figure 5, it took approximately 15 minutes to develop this sample model.
The output of the model is translated into bug-free C source code as a text file. In this
case a file named KEELPLC.txt is created.

GE/Fanuc provides a “C Toolkit for PACSystems” application that runs on Windows-
based PC’s. They provide a user’s manual that describes its installation and use: “C
Programmer’s Toolkit” for PACSystems (User’s Manual, GFK-2259B, November, 2005).

This Application Note assumes that the GE/Fanuc documentation is sufficient to
describe the general use of C Function Blocks.

Copyright © Compsim LLC 2007; All rights reserved 8 of 19

PACSystem C Code:

GE/Fanuc provides include files that provide the interface between the Proficy Machine
Edition Function Blocks and the C code:

PACRXPlc.h – is used for any PAC System
PACRX7iPlc.h – is used when the target platform is the RX7i
PACRX3iPlc.h – is used when the target platform is the RX3i

In our example, we will target our KEEL engine for any PAC system.

This Application Note will assume that the “C Toolkit for PACSystems” was installed in
the C:\ProgramFiles\GE Fanuc Software\PACSystemsCToolkit directory.

It also assumes that a Projects subdirectory was also automatically created during the
install. The C Toolkit instructions suggest creating a separate subdirectory under
Projects for each C Toolkit project. In this case, we will create a subdirectory called
KEELPLC for our C KEEL engine development.

To create the appropriate code for the “C Tookit for PACSystems”, copy the
KEELPLC.txt file to “KEELPLC.c” using Windows copy and paste or rename services.

The new file will exist at:

C:\ProgramFiles\GE Fanuc Software\PACSystemsCToolkit\Projects\KEELPLC\KEELPLC.c

Open the KEELPLC.c file with Notepad, or other text editor.

Insert the following line at the beginning of the KEELPLC.c file:

#include <PACRXPlc.h> /*For C blocks that run on any PAC System*/

If the target had been for either the RX7i or RX3i, then one of the next two lines would
have been inserted:

#include <PACRX7iPlc.h> /*For C blocks that run on RX7i PLC*/
#include <PACRX3iPlc.h> /*For C blocks that run on RX3i PLC*/

Copyright © Compsim LLC 2007; All rights reserved 9 of 19

The KEEL Toolkit includes a section in the header with the suggested calling procedure
for the KEEL Engine. Figure 6 shows the commented area from the KEEL header.

/**/
/* General process for calling KEEL routines */
/* */
/* This code is 'almost' valid C code. You are asked to develop your own code to */
/* read the external inputs and load them into the argvalues table. If you copy the */
/* following code into your source, you will need to personalize a couple of lines. */
/**/

/* {add code to load external inputs into argvalues() table} */
/* (Replace 'x' below with the appropriate values normalized between 0 and 100.) */
/* argvalues[0]=x; /* Expanded Production INPUT */
/* argvalues[1]=x; /* Basic Production INPUT */
/* argvalues[2]=x; /* Vibration INPUT */
/* dodecisions(); */
/* calculate outputs based on buffered inputs */
/* {post the output values or derived values from modposvalues(), posvalues(), */
/* threshvalues() to external control functions.} */
/* You may want to call the loginputs(); routine to log inputs to a file. */.

.
Figure 6

From the GE/Fanuc C Toolkit documentation we know that C Function Blocks use a
GefMain routine as the interface.

From our KEEL design (and from the pseudocode) we know that this KEEL Engine
(KEEL Function Block) will have three (3) inputs that are loaded into the argvalues
array at index positions 0, 1, and 2.

argvalues[0] will hold an input signal for “expanded production”
argvalues[1] will hold an input signal for “basic production”
argvalues[2] will hold an input signal for “vibration”

From our KEEL design, we know that we will be using two (2) outputs. These will come
from the modposvalues array at index positions of 0 and 2.

We will need one additional input to the KEEL Engine that will trigger the first time the
engine is called to initialize the variables used internal to the KEEL Engine.

The inputs and outputs will be tied to the KEEL engine by reference pointers.

Copyright © Compsim LLC 2007; All rights reserved 10 of 19

The following code is added at the very end of the KEELPLC.c file:

int GefMain(T_BOOLEAN *init, T_REAL32 *extrarate, T_REAL32 *baserate, T_REAL32 *vibration, T_REAL32
*combinedrate, T_REAL32 *kalarm)
{
 if((init==NULL)||(extrarate==NULL)||(baserate==NULL)||(vibration==NULL)||(combinedrate==NULL)||
(kalarm==NULL)) return(GEF_EXECUTION_ERROR);
 if(*init==1){
 initializefixedtables();
 *init=0;
 }
 argvalues[0]=*extrarate;
 argvalues[1]=*baserate;
 argvalues[2]=*vibration;
 dodecisions();
 *combinedrate=modposvalues[0];
 *kalarm=modposvalues[2];
 return(GEF_EXECUTION_OK);
}

Figure 7

Figure 7 shows the GefMain subroutine that defines the interface to the KEEL engine.

*init references a BOOLEAN value that acts as a flag for initializing the variables within
the KEEL Engine.
*extrarate references a REAL value that defines extra production
*baserate references a REAL value that defines the base production rate
*vibration references a REAL value that defines the amount of sensed vibration
*combinedrate references a REAL value for the integration of the extrarate, baserate,

and vibration
*kalarm references a REAL value that will trigger an alarm for service if the interpreted

risk associated with vibration rises above the trigger point

The simple logic of this routine is:

• If any of the variable pointers are null, indicate an error and exit
• If this is the first time, call initializefixedtables to initialize all internal variables
• Load the inputs
• Call the internal dodecisions routine to process the information
• Return the outputs

Copyright © Compsim LLC 2007; All rights reserved 11 of 19

Use the PACSystems C Toolkit to create the object file:

When the PACSystems C Toolkit is installed on the PC, an icon is placed
on the desktop. Double clicking on this icon will open the C Toolkit in a
DOS Window.

Figure 8 below shows the results of first using the cd command to change to the
KEELPLC directory (line 5).

 cd KEELPLC

Lines 7 and 8 show the command to compile the code:

 compileCPACRX KEELPLC

NOTE: The C Toolkit assumes the .c extension to the filename. (KEELPLC.c)

The remainder of the window shows the progress of the compile process.

If there had been any errors during the compile process they would be indicated here.

Copyright © Compsim LLC 2007; All rights reserved 12 of 19

Figure 8

The compile process creates a new subdirectory inside of the KEELPLC directory called
plc.

Figure 9

This directory holds the object file that was created by the PACSystems C Toolkit.
(KEELPLC.gefElf)

Figure 10
Object File: KEELPLC.gefElf

Copyright © Compsim LLC 2007; All rights reserved 13 of 19

he
ng

mer’s

1. In the Project tab, expand the Logic node.
he

3. Block. This brings up a file

4.
er.

At this point a new C Function Block is available for use within the Proficy Machine
Edition environment.

Proficy Machine Edition:

{This Application Note is not intended to be a tutorial for the use of Proficy Machine
Edition}

Figure 11 shows the Navigator window from within
Proficy Machine Edition. This shows the hardware
configuration selected for this example. It includes
an analog input card in slot 4 and an analog output
card in slot 5 and a discrete input card in slot 6.

This figure also shows the logic components used in
this design. It includes a main RLL program and a
Function Block (KEELPLC) that includes the KEEL
engine previously designed.

The following procedure was used to incorporate t
C Block in the application: (from Chapter 3 Writi
a C Application in the GE Fanuc “C Program
Toolkit” User’s Manual, GEFK-2259B)

2. Right click the Program Block node under t
Logic node.
Select Add C
navigation dialog box.
Navigate to the *.gefElf file and click the
Open button to add the C Block to the fold

Copyright © Compsim LLC 2007; All rights reserved 14 of 19

o specify the parameters for our C Block, click on the C Block in the Navigator. In the

T
properties page for the C Block, click on the Parameters item and then click on the
button provided. This opens the Parameters dialog box with two tabs, one for inputs
and one for outputs. For this example they are filled in as follows:

Figure 12

Inputs

Figure 13
Outputs

Copyright © Compsim LLC 2007; All rights reserved 15 of 19

The C Block can be invoked in a number of ways. See the C Programmer’s Toolkit
User’s Manual for details.

In Figure 14 we show it as a sub-block of the main block.

Figure 14

A better view of the function block is shown in Figure 15.

Copyright © Compsim LLC 2007; All rights reserved 16 of 19

Figure 15

Right clicking on the spaces outside of the function block allows the assignment of
specific hardware registers.

Figure 16 shows the assignment of a BOOLEAN variable for Init that defaults to True
(on) when the application starts. This variable is reset the first time the KEELPLC
function block is called.

Figures 17 – 20 shows the assignment of symbolic references to specific hardware
registers.

Copyright © Compsim LLC 2007; All rights reserved 17 of 19

Figure 16

Figure 17

Figure 18

Figure 19

Copyright © Compsim LLC 2007; All rights reserved 18 of 19

Figure 20

Dependencies:

This Application Note utilizes Compsim’s KEEL Toolkit to develop the KEEL Engine C
source code. A text editor was used to add the few additional lines of C code to the
KEEL C code. The GE/Fanuc C Toolkit for PACSystems was used to compile the
KEELPLC.c source code and create the KEELPLC.gefElf object file. The GE/Fanuc
Proficy Machine Edition development environment was used to create the application
files for the GE-PAC system.

Copyright © Compsim LLC 2007; All rights reserved 19 of 19

Summary:

While this example shows an almost trivial KEEL application, it would have been
significantly more difficult to develop this application manually in C. The code would
have to be developed, debugged and tested using other means.

Should the manually developed C code ever need to be audited and extended, the life
cycle costs would escalate even higher.

KEEL Technology enables GE Programmable Automation Controllers to satisfy the
needs of much more complex applications that include dynamic, non-linear, inter-
related, multi-dimensional problem sets. This satisfies three market demands: 1) the
need to utilize COTS industrially hardened equipment to address more complex
problems, 2) the need to support life cycle cost issues at the same time, and 3) the
opportunity to incorporate business practices in the form of executable policies directly
into the controller.

The GE Fanuc PAC family of controllers provides an excellent host for KEEL Engines
encapsulated in IEC 61131-3 Function Blocks.

Contact:

Compsim LLC is a provider of next generation cognitive technology for application in automotive, industrial automation, medical, military,
governmental, enterprise software and electronic gaming markets. The company is headquartered in Brookfield, Wisconsin.

Compsim LLC
PO Box 532
Brookfield, Wisconsin 53008
(262) 797-0418
http://www.compsim.com

http://www.compsim.com/

